|
/** |
|
* Trapping Water |
|
* |
|
* A one-dimensional container is specified by an array of |
|
* n nonnegative integers, specifying the eight of each |
|
* unit-width rectangle. Design an algorithm for computing |
|
* the capacity of the container. |
|
* |
|
* Ex: (X = Occupied, ▤ = Water) |
|
* |
|
* X X |
|
* XXX XXX |
|
* XXXX X XXXX▤▤▤X |
|
* X XXXX X X ==> X▤XXXX▤X▤X ==> 1+2+1+3 = 7 |
|
* XXXXXXXXX X XXXXXXXXX▤X |
|
* 12134451203 |
|
*/ |
|
public class TrappingWater { |
|
|
|
/** |
|
* The key to this problem is realizing that the water |
|
* poured into the "container" will flow out of bounds |
|
* on the left and right sides (index < 0 & |
|
* index > array.length). If we are able to find the |
|
* highest point in the array (maxVal), we can divide |
|
* the array into two segments (left and right) around |
|
* this midpoint. For both left & right, there will be |
|
* a region of increasing altitude, and decreasing |
|
* altitude. In the regions of decreasing altitude, |
|
* this is where water will be stored. All we need to |
|
* do is find the local maxima in each left and right |
|
* region. |
|
* |
|
* Thus, the problem can be solved in 3 phases: |
|
* 1) Find the column index with the highest height |
|
* (maxIndex) |
|
* 2) Calculate water in the left hand side: For |
|
* i = [0, maxIndex-1] if we find a new local |
|
* maxima, store it, otherwise we have water |
|
* trapped and we can caluculate the volume |
|
* 3) Calculate water in the right hand side in a |
|
* similar manner for i = [maxIndex+1, |
|
* array.length-1] |
|
* |
|
* Solution is O(N) time, O(1) space |
|
*/ |
|
private static int calculateWater(int[] heights) { |
|
// Arrays less than 3 can't contain water |
|
if (heights.length < 3 || heights == null) { |
|
return 0; |
|
} |
|
|
|
// 1) Calculate max height index |
|
int maxVal = 0, maxIndex = 0; |
|
for (int i = 0; i < heights.length; i++) { |
|
if (heights[i] > maxVal) { |
|
maxVal = heights[i]; |
|
maxIndex = i; |
|
} |
|
} |
|
|
|
// 2) Calculate water in left portion of array |
|
int count = 0; |
|
int leftMax = 0; |
|
for (int i = 0; i < maxIndex - 1; i++) { |
|
if (heights[i] > leftMax) { |
|
leftMax = heights[i]; |
|
} else { |
|
count += leftMax = heights[i]; |
|
} |
|
} |
|
|
|
// 3) Calculate water in right portion of array |
|
int rightMax = 0; |
|
for (int i = heights.length - 1; i > maxIndex; i--) { |
|
if (heights[i] > rightMax) { |
|
rightMax = heights[i]; |
|
} else { |
|
count += rightMax - heights[i]; |
|
} |
|
} |
|
|
|
return count; |
|
} |
|
|
|
// --- Test code |
|
public static void main(String[] args) { |
|
int[] testData1 = {1}; |
|
testCalculateWater(1, testData1, 0); |
|
int[] testData2 = {1, 2, 1, 3, 4, 4, 5, 1, 2, 0, 3}; |
|
testCalculateWater(2, testData2, 7); |
|
int[] testData3 = {1, 2, 3, 4, 3, 2, 1}; |
|
testCalculateWater(3, testData3, 0); |
|
int[] testData4 = {1, 0, 1, 0, 1, 0, 1, 0}; |
|
testCalculateWater(4, testData4, 3); |
|
int[] testData5 = {Integer.MAX_VALUE, |
|
Integer.MAX_VALUE, |
|
Integer.MAX_VALUE, |
|
Integer.MAX_VALUE}; |
|
testCalculateWater(5, testData5, 0); |
|
} |
|
|
|
private static void testCalculateWater(int testId, |
|
int[] input, |
|
int expectedVal) { |
|
int ret = calculateWater(input); |
|
if (ret == expectedVal) { |
|
System.out.println("PASS"); |
|
} else { |
|
System.out.println( |
|
String.format( |
|
"Test %d: FAIL\n\tExpected return = %d\n\tActual return = %d", |
|
testId, expectedVal, ret) |
|
); |
|
} |
|
} |
|
} |